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tion in order to obtain accurate numerical results. We can also
obtain, by means of (36), the higher order modes. In this case
the integrals which express the equation coefficients must be
regarded as principal values since function A(k) vanishes inside
the integration domain.

V. CONCLUSIONS

A new method is given for calculating the dispersion charac-
teristics of microstrip lines. The analysis is rigorous and it
expresses the solution of the dispersion equation in terms of the
solution of a double infinite system of linear equations. The
system coefficients are given by certain quadratures. The numer-
ical examples reveal the high convergence order of the method.
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Admittance Calculation of a Slot in the Shield of
a Multiconductor Transmission Line

Richard G. Plumb

Abstract —The admittance calculation for a narrow slot in the con-
ducting shield of a multiconductor transmission line is presented. The
admittance represents a generalized admittance resulting from an
asymptotic, one-term moment method solution and is approximated
using transmission line theory. The calculated admittance is useful in
modeling connectors for multiconductor transmission lines. Some useful
impedance calculations for multiconductor transmission lines are devel-
oped.

I. INTRODUCTION

In a recent paper [1], we presented a method of modeling
connectors for multiconductor transmission lines (MTL’s). In
that investigation the connector was modeled as a narrow cir-
cumferential slot, of width d, in the shield of an MTL. The
MTL, uniform in the axial direction and having an arbitrary
cross section, contained N lines and a conducting shield of
finite width ¢. The interior medium of the MTL was assumed
lossless and homogeneous. The problem was solved by treating
the slot as a thick aperture in the shield. The equivalence
principle was invoked to obtain two coupled integral equations
in the equivalent surface magnetic currents. A one-term mo-
ment method solution was then obtained for an electrically
narrow slot and a small shield radius. The moment method
solution led to an equivalent circuit representation. Power calcu-
lations were derived from the equivalent circuit for the power
radiated through the slot and the power transmitted down the
line. When the slot admittance is replaced by the transfer
admittance of a connector, the power radiated through the slot
becomes the power radiated through the connector.

The original MTL network and an equivalent circuit are
shown in Fig. 1. The equivalent circuit consists of the admit-
tances Y%, Y?, and Y, corresponding to the generalized admit-
tance of the internal region of the MTL, the slot region, and the
region external to the MTL respectively, For a one-term mo-
ment method solution, Y°¢ is the radiation admittance or the
external input admittance of the antenna formed by the outer
shield surface, having a finite feed width of length d, when a
uniform electric field excites the antenna. The admittance Y°
corresponds to the transfer admittance of the slot, which can be
interpreted as the transfer admittance of a connector. The
current source I’ is a generalized current source and is obtained
by calculating the net short circuit shield current on the inner
shield surface. The current I’ is the current on the inner shield
surface when the slot is covered with a perfect conductor.

In this paper we detail the calculations for the admittance Y.
An approximate expression for the admittance is obtained using
transmission line theory. In doing so, some useful impedance
calculations for multiconductor transmission lines are presented.

II. STATEMENT OF THE PROBLEM

The admittance Y? is the admittance at the i‘nner slot surface
looking into the MTL when a uniform magnetic current is
placed over the shorted surface [2]. The magnitude of the

Manuscript received May 17, 1990; revised November 19, 1990.

The author is with the Department of Electrical and Computer
Engineering, University of Kansas, Lawrence, KS 66045-2969.

1IEEE Log Number 9042497.

0018-9480 /91 /0400-0743%01.00 ©1991 1EEE



744 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 4, APRIL 1991

N Lines
+ (2] (z.] +
- -
Vs Vi
_ Shield
. -
> d e
Slot
(a)
T l
Vi ya yb ye
- | |
®)
Fig. 1. (a) Original MTL network including terminations and (b) an

equivalent circuit for the slot region.
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Fig. 2. An equivalent network for the interior of the MTL network of
Fig. 1(a) with (a) a magnetic current over the slot and (b) a point voltage
source.

magnetic current M, shown in Fig. 2(a), is equal to the magni-
tude of the original electric field at the inner slot surface when
the slot is present. The effect of the magnetic current is to
produce the same field distribution inside the MTL as in the
original problem. The field distributions inside the MTL of Figs.
1(a) and 2(a) are, therefore, identical. When Bd is small, where
B is the wavenumber inside the MTL, the effect of this magnetic
current is essentlally that of a point voltage source V,, driving
the shield as seen in Fig. 2(b). By neglecting all hlgher order
modes, Y*? is approximately given by the driving point admit-
tance of the voltage source and can be calculated from transmis-
sion line theory.

The problem we consider here then is the calculation of the
driving point admittance of a voltage source located in the
shield of an MTL as shown in Fig. 2(b). The terminating
networks in Fig. 2 are represented by equivalent Thevenin

e > 1R e
N [z 2 [Z,] +
v, ~ v,
(a)
> 1r, e » 1R e
(2] o121 (371 = (2]
(b)
L
(23] [ZR]
b
]
Ya
)

Fig. 3. Steps required in calculating Y. (a) Divide the MTL network
in two, (b) compute the input impedance matrices of the N-ports, and
(¢c) create a 1-port from the two N-ports.

networks and are assumed known. The voltage sources in the
Thevenin networks represented the impressed sources, which
are independent sources, while the voltage source in the shield
is a dependent source. The driving point admittance, which is
given by the ratio of the net shield current to the voltage V,,,
calculated as follows. Divide the MTL network of Fig. 2 in two
at the location of the source V,, as shown in Fig. 3(a). By using
the matrix chain parameters, compute the impedance looking
into the two newly created N-ports with all sources deactivated,
as shown in Fig. 3(b). Then, using standard network theory,
compute the driving point admittance of the 1-port formed by
the connection of the two N-ports as depicted in Fig. 3(c).

III. ANALYSIS

The input impedance of the two N-ports of Fig. 3(a) can
easily be obtained by using the matrix chain parameters for
MTL’s. A brief review of the matrix chain parameters (or ABCD
parameters) will be given here [3].

Consider the uniform, homogeneous MTL network containing
N +1 lines as shown in Flg 4. The ling voltages and currents are
represented by the vectors (x) and I{x). Under time-harmonic
conditions, the line voltage and current vectors satisfy the state
variable equation

dv(x) .

o ]  —[z] || V(%)

- = (1)
di(x) .

™ =[Y] [o] || I(x)

where [Z] and [Y] are the N X N per-unit-length impedance
and admittance matrices of the MTL and [0} is an N X N matrix
with all elements equal to zero. The solution to (1) is

_ V(x())
=[#(x - xy)] (x(,) x

V(x)
I(x)

\%

Xo (2
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Fig. 4. (a)A uniform MTL of length L with Thevenin equivalent

networks for terminations and (b) a 2N-port representation of the
section of MTL.

where x, is a reference point and [¢(x — x,)] is the 2N X2N
" state transition matrix, or the chain parameter matrix, given by

_ _ [$:(x — x0)] [#12(x — x0)]
[o(x=x)] [62(x—x0)]  [$22(x —x0)] - O

The [¢;,]in (3) are N X N submatrices and are [3]
[$11(x — x0)] = cosh {Y[Z][¥] (x — x0)} (4)
[$12(x — x0)] = —simh (VIZTIY T (x - xp)}[Z.]  (5)
[éu(x — x0)]=—[Z.] 'sinh {[ZI[YT(x - x)} (6)
[62(x - x0)] = [¥ leosh (YIZT¥T (x - x)[¥Y]™ (7)

where [Z_] is the characteristic impedance of the MTL, defined

as
[z]=VIZIYTIY]™ (82)
or, equivalently,
[z.]1=(VIZT[¥]) " [2]. (8b)
For lossless lines, [Z] and [Y] are
[Z]=jw[L] )]
[Y]=Jje[C] ' (10)

where [L] and [C] are the per-unit-length external inductance
and capacitance matrices. For lossless, homogeneous lines,
(4)-(8) reduce to

[611(x — x0)] = cos (B(x — x)} 1] (11)
[‘1’12("_"0)]:-7]‘”““{/3("‘x())}[L] (12)
[¢2](x—x(,)]= _‘jﬂ sin{ﬁ(x—x(,)}[L]_] (13)
[$2(x = x9)]=cos{B(x — xy)[] (14)

(2.]=ZIL] (15)

where [I] is the N X N identity matrix and B is the wavenum-
ber. ' .

From (2) the voltages and currents at any point along the
MTL are known in terms of the chain matrix parameters and
the voltages and currents at the reference point x,. By taking
the reference point x, equal to zero and x equal to the line
length, the MTL network of Fig. 4(a) can be represented by the
2N-port of Fig. 4(b). The chain matrix parameters relate the
output voitage and current vectors to the input vectors as

m _ [[qsu(L)] [6a(D)] Hﬁ] )

L |[ealD)] [$(DIL 1

The termination conditions are given by Kirchhoff’s law as
P+ 211+ P, =Ty (a7)
~V, +[Z, 1+ 7V, =0y (18)

where 6N is_a vector containing N zeros. Solving (17) and (18)
for V; and V, yields

V,=V,-[1z]], (19)

(20)

Equation (16) can riow be solved for the input voltage and
current vectors subject to (19) and (20). With the input vectors
kn(zw)n, the voltages and currents along the line are simply given
by (2).

The input impedance of the two N-ports of Fig. 3(c) can be
computed using the chain matrix parameters. First consider the
section of MTL of length [, terminated in an impedance net-
work [Z,] as shown in Fig. 5. From (2), the voltages and currents
are related as

V,=V, +[Z,11,.

7| _[lent] [#a]]| % @)
fz [¢21(1L)] [d’zz(lL)] I_; ‘
The output termination condition is
ﬁlz_[zs]i;‘ (22)

An expreésioh relating the input voltage 172 to the input current
I, is desired.
Substituting (22) into the second equation of (21) and solving
for I, gives
- -1
Il=([¢22(1L)]—[¢21(1L)][Z.\~]) L. (23)

Combining £22) and (23) with the first equation of (21) and
solving for ¥, shows

7= ([00)]-[6uC)Z])
([¢20)]-[620)1[Z,])
The desired input impedance is then seen as
[zE] = - ([0 -[6u()IZ])
([6200)]-[S2UDIZD) " (25)

Now consider another scction of MTL of length {,. Let the
opposite end be terminated in the load [Z, ). The output termi-
nation condition is

-1

L. 4

Va=12,15. (26)
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Fig. 6. Circuit used to compute the driving point admittance.

A similar analysis shows that the desired input impedance is

[28] = - ([$u)] - [2.1[620)]) !
'([¢12(1R)]_[ZL][¢22(IR)])- 1))

For lossless lines it is easy to show, with the aid of (11)-(14),
that the above equations reduce to

[25] = ([2,]+ jtan (B1,)[Z.])

([z)+ijtan(BIIZ]) (2]  (28)
[zE] =[2.]1([2.]+ jtan (BIR)[Z,])
'([ZL]+ftan(BlR)[Zc])' (29)

Equations (28) and (29) are the extension of the familiar input
impedance of a two-conductor line.

The admittance Y? is approximated by the driving point
admittance of the 1-port formed by the connection of the two
N-ports as shown in Fig. 3. To determine Y%, place a voltage
source V,, across the terminals of the 1-port of Fig. 3(c) as
shown in Fig. 6. The driving point admittance of the voltage
source is the ratio of the current I, to the voltage ¥, [4]:

Yi=1,/V,,. (30)
Define an N-element voltage vector I7m as
=V, (11---1). (31)

Kirchhoff’s voltage and current laws for the 1-port may be
expressed as

-

~VR+ VL4V, =0,

IR+ TL=0,

(32)
(33)

where VR and IR, and V't and I are the N-element terminal
voltage and current vectors of the two N-ports. Assuming the
two N-ports to be linear and passive, the sum of the currents

entering them is zero, or

N

Y IF+1,=0 (34)
n=1

N

Y IR-I=0. (35)

‘n=1
The terminal relations for the two N-ports are

VR=[ZR]|I® (36)

Vi=|zE]|I" (37)

Combining (32), (33), (36), and (37) and solving for I~ shows
1 _»
Fe—— (2] +[28]) 7, (58)

Let (Z] ]+[Z;§]) 1 denote the ijth element of the inverse of
the matrix (zE ]+[ZL]) Then the N equations of (38) may be
rewritten as

N
t=— ¥ ([z8]+[24]),, V.
n=1
N -1
12L=_ Z ([Z£]+[le;1 )2,, Vo

n=1

Iy=~- ([z] [ZE]) a¥on (39)
Summing the N equatlons of (39) and using (34) gives
O o (3 P | )
Therefore the desired driving point admittance is given by
-E Lz @

IV. SUMMARY

In this paper we presented an approximate calculation for the
admittance seen looking into a slot in the shicld of a multicon-
ductor transmission line when a uniform magnetic current is
placed over the slot. The calculation presented is approximate
in that only the transmission linc mode was used in the calcula-
tion; all higher order waveguide modes were neglected. By
neglecting the higher order waveguide modes the magnetic
current may be replaced by a point voltage source at the slot
location. The admittance calculation then corresponds to calcu-
lating the driving point admittance of a point voltage source
located in the shield of an MTL.
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Full-Wave Analysis of Multilayer Coplanar Lines
Chia-Nan Chang, Wen-Chang Chang, and Chun Hsiung Chen

Abstract —A full-wave analysis of a coplanar wave-guiding structure
with multiple dielectric layers is presented. In this study, the results of
the hybrid approach that combines the finite-element method and the
conformal-mapping technique are compared with those of the spectral-
domain approach. Numerical results for effective dielectric constants,
characteristic impedances, current distributions, and field distributions
for various multilayer coplanar line structures are presented and dis-
cussed. Comparisons are also made of the computed results with the
available quasi-static ones.

1. INTRODUCTION

With the increased use of suspended substrate lines and for
special purposes such as protection from mechanical or chemi-
cal damage and the provision of additional means to adjust the
transmission line characteristics, the study of multilayer planar
wave-guiding structures has received the attention of a number
of investigators [1]-[5]. Instead of analyzing the problem directly
in the space domain, most previous work has been carried out in
the spectral domain. Rapidity in obtaining the dispersion char-
acteristics of the lines is an advantage of this technique. How-
ever, it is not so easy to obtain both the field patterns and the
characteristic impedances of multilayer planar wave-guiding
structures because of the complicated mathematical manipula-
tion of the fields from the spectral domain to the space domain.

In a recent investigation, a rigorous hybrid full-wave analysis
of coplanar waveguide is presented [6]. In that work, the infinite
space in the original domain is first mapped into a finite region
in the image domain by the mapping function originally em-
ployed by Wen [7]. The transformed variational equation in the
image domain is then solved efficiently by the conventional
finite-element method. In this way, the difficulties associated
with both the infinite space and the field singularity near the
conductor edges can be removed. In this paper, the same hybrid
approach is utilized to study the full-wave characteristics of a
coplanar line structure with multiple dielectric layers. Espe-
cially, the frequency-dependent effective dielectric constants
and characteristic impedances of the multilayer coplanar line
are calculated and compared with available data [4], [5]. Also
investigated are the field distribution along the center line of
the slot and the current distributions on both the signal strip
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work was supported by the National Science Council, Republic of
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Fig. 1. Geometry of mulilayer coplanar line and original domain

(x'>0)in z' plane.

and the ground plane. Because of a lack of data for comparison,
the results of this hybrid approach are validated by a compari-
son with those of the spectral-domain approach [5].

II. FormMuLATION

Consider an open uniform coplanar line structure with multi-
ple layers of isotropic and lossless dielectrics as shown in Fig. 1.
Here a central metal strip (assuming negligible thickness) of
width 24 and two conducting ground planes (also of negligible
thickness) of separation 2b are placed in the plane (y'=0)
between dielectric layers. Above and below the conductors are n
upper and m lower homogencous dielectric layers of permittivi-
ties €, = ¢€y€,, (k=1,2,---,n) and €, = €pe,, (k=1,2," -, m),
respectively. The guided modes of this inhomogeneous structure
are in general hybrid; therefore, both the axial components E,
and H, are required in the analysis. As far as the fundamental
(E, even and H, odd) mode is concerned, it is sufficient to
consider the right half structure with a magnetic wall at x'=0.

A. Hybrid (Finite-Element / Conformal-Mapping) Approach
Following the idea of [6], Wen’s mapping function {7}

z'=asn(z,k) (1)
is used to map the right half plane x’'> 0 (original domain) in
Fig. 1 into a rectangular region (of width 2K(k) and height
K(k")) in the image domain (Fig. 2). Here, sn(z,k) is the
complex sine elliptic function, K(k) and K(k") are the complete
elliptic integrals of the first kind and the second kind [8],
k=a/b, and k'=V1- k?. By this mapping, the transverse
fields (E,, H,) are smooth everywhere in the image domain {6},
although the transverse fields (E;, H) in the original domain
exhibit edge singularity near the conductor edges. Thus the field
singularity difficulty in the original domain may be removed.

The variational formulation for the multilayer coplanar lines
in the image domain (Fig. 1) is the same as [6, eq. (1)}, and the
boundary conditions on the electric and magnetic walls are
shown in Fig. 2. The details of the numerical procedures are
given in [6].

B. Spectral-Domain Approach

For purposcs of cross checking, the new type of spectral-
domain approach [9] is also applied to the multilayer coplanar
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