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tion in order to obtain accurate numerical results. We can also
obtain, by means of (36), the higher order modes. In this case
the integrals which express the equation coefficients must be
regarded as principal values since function A(k) vanishes inside
the integration domain.

V. CONCLUSIONS

A new method is given for calculating the dispersion charac-

teristics of microstrip lines. The analysis is rigorous and it

expresses the solution of the dispersion equation in terms of the

soIution of a double infinite system of linear equations. The
svstem coefficients are given bv certain auadratures. The numer-.
ical
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Admittance Calculation of a Slot in the Shield of
a Multiconductor Transmission Line

Richard G. Plumb

Abstract —The admittance calculation for a narrow slot in the con-
ducting shield of a multiconductor transmission line is presented. The
admittance represents a generalized admittance resulting from an
asymptotic, one-term moment method solution and is approximated
using transmission line theov. The calculated admittance is useful in
modeling connectors for multiconductor transmission lines. Some useful
impedance calculations for multiconductor transmission lines are devel-
oped.

1. INTRODUCITON

In a recent paper [1], we presented a method of modelling
connectors for multiconductor transmission lines (MTL’s). In
that investigation the connector was modeled as a narrow cir-

cumferential slot, of width d, in the shield of an MTL. The

MTL, uniform in the axial direction and having an arbitrary
cross section, contained N lines and a conducting shield of

finite width t. The interior medium of the MTL was assumed
lossless and homogeneous. The problem was solved by trealing

the slot as a thick aperture in the shield. The equivalence

principle was invoked to obtain two coupled integral equations

in the equivalent surface magnetic currents. A one-term mo-
ment method solution was then obtained for an electrically
narrow slot and a small shield radius. The moment method

solution led to an equivalent circuit representation. Power calcul-
ations were derived from the equivalent circuit for the power
radiated through the slot and the power transmitted down the

line. When the slot admittance is replaced by the transfer

admittance of a connector, the power radiated through the slot
becomes the power radiated through the connector.

The original MTL network and an equivalent circuit are
shown in Fig. 1. The equivalent circuit consists of the admit-

tances Y“, Yb, and Y’, corresponding to the generalized admitt-

ance of the internal region of the MTL, the slot region, and the
region external to the MTL respectively. For a one-term mom-
ent method solution, Y’ is the radiation admittance or the
external input admittance of the antenna formed by the outer
shield surface, having a finite feed width of length dl when a

uniform electric field excites the antenna. The admittance Yb
corresponds to the transfer admittance of the slot, which can be

interpreted as t,he transfer admittance of a connector. The

current source 1’ is a generalized current source and is obtained
by calculating the net short circuit shield current on the inner

shield surface. The current Z’ is the current on the inner shield

surface when the slot is covered with a perfect conductor.
In this paper we detail the calculations for the @dmittance Y“.

An approximate expression for the admittance is obtained using
transmission line theory. In doing so, some useful impedance
calculations for multiconductor transmission lines are presented.

II. STATEMENT OF THE PROBLEM

The admittance Ya is the admittance at the inner slot surface

looking into the MTL when a uniform magnetic current is
placed over the shorted surface [2]. The magnitude of the
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Fig. 1. (a) Original MTL network including terminations and (b) an
equivalent circuit for the slot region.
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Fig. 2. An equivalent network for the interior of the MTL network of
Fig. l(a) with (a) a magnetic current over the slot and (b) a point voltage
source.

magnetic current M, shown in Fig, 2(a), is equal to the magni-
tude of the original electric field at the inner dot surface when
the slot is present. The effect of the magnetic current is to
produce the same field distribution inside the MTL as in the
original problem. The field distributions inside the MTL of Figs,
l(a) and 2(a) are, therefore, identical. When ~d is small, where
/3 is the wavenumber inside the MTL, the effect of this magnetic
current is essentially that of a point voltage source V~ driving
the shield as seen in Fig. 2(b). By neglecting all higher order

modes, Y’ is approximately given by the driving point admit-
tance of the voltage source and can be calculated from transmis-

sion line theory.

The problem we consider here then is the calculation of the
driving point admittance of a voltage source located in the
shield of an MTL as shown in Fig, 2(b), The terminating
networks in Fig, 2 are represented by equivalent Thevenin

F
[Zs]

*lLI+

r I

-4
(a)

Y=

(c)

~lg. 3. StepS required in calculating Y“. (a) Divide the MTL network
in two, (b) compute the input impedance matrices of the N-ports, and
(c) create a l-port from the two N-ports.

networks and are assumed known. The voltage sources in the
Thevenin networks represented the impressed sources, which
are independent sources, while the voltage source in the shield
is a dependent source. The driving point admittance, which is

givers by the ratio of the net shield current to the voltage V~, is
calculated as follows. Divide the MTL network of Fig. 2 in two

at the location of the source Vm as shown in Fig. 3(a). By using

the matrix chain parameters, compute the impedance looking

into the two newly created N-ports with all sources deactivated,
as shown in Fig. 3(b). Then, using standard network theory,

compute the driving point admittance of the l-port formed by

the connection of the two N-ports as depicted in Fig. 3(c).

III. ANALYSIS

The input impedance of the two N-ports of Fig. 3(a) can
easily be obtained by using the matrix chain parameters for

MTL’s, A brief Teview of the matrix chain parameters (or ABCD
parameters) will be given here [3].

Consider the uniform, homogeneous MTL network containing

N + 1 lines as shown in Fig. ~, The lin~ voltages and currents are
represented by the vectors V(x) and Z( .x). Under time-harmonic
conditions, the line voltage and current vectors satisfy the state
variable equation

(1)

where [z] and [Y] are the N X N per-unit-length impedance

and admittance matrices of the MTL and [0] is an N x N matrix

with all elements equal to zero. The solution to (1) is
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Fig. 4. (a)A uniform MTL of length L with Thevenin equivalent
networks for terminations and (b) a 2N-port representation of the
section of MTL.

where XO is a reference point and [+(x – xJ1 is the 2N X 2N
state transition matrix, or the chain parameter matrix, given by

[+(~-xo)l=
[

[411(X- -%)1 [4,2(X- Xo)l . (3)

[421( X-XO)I [422(X -Xo)l I

The [#ij] in (3) are N x N submatrices and are [3]

[4%(X- Xo)]=cosfl{Jm(x -xO)} (4)

[412( X-XO)] = ‘Sinh{m(x - ‘0)}[2’1. (5)

[dJ~~(x -xd] = -[zc]”’sinh{i~(x- xO)} (6)

[4,,(x- xo)]=[y]COsh{/~(x - XO)[Y]-l (7)

where [ZC] is the characteristic impedance of the MTL, defined

as

[zc]=J~[Y]-’ (8a)

or, equivalently,

[zc]=(~m)-’[z]. (8b)

For lossless lines, [Z] and [Y] are

[Z]= jw[L] (9)

[Y]=jco[C] (lo)

where [L] and [C] are the per-unit-length external inductance
and capacitance matrices. For lossless, homogeneous lines,

(4)-(8) reduce to

[411( x-~()) l=cos(P(x-x())}[~l (11)

[A*(X - %)1= +sin{~(x–x(~)}[~] (12)

[@21( x-xt~)l =+sin{P(x -~t,)}[L]-’ (13)

[@22( x-x,) )l=cos{P(x-x,))[~l (14)

[ZC]=;[L] (15)

where [1] is the N x N identity matrix and ~ is the wavenum-

ber.
From (2) the voltages and currents at anY Point along Ithe

MTL are known in terms of the chain matrix parameters and

the voltages and currents at the reference point XO. BY taking
the reference point X. equal to zero and x equal to the line
length, the MTL network of Fig. 4(a) can be represented by the
2N-port of Fig. 4(b). The chain matrix parameters relate the
output voltage and current vectors to the input vectors as

[HF2 1[1= [+11(~)1 [f#’12(~)] J?

[+zl(~)l [dzz(~)l z “

(116)

~

The termination conditions are given by Kirchhoff’s law as

J
_~+[z, ]~+J71=(fN (:17)

–P2+[zL]~+7L=6N (“18)

whely 6N is+a vector contairiing N zeros. Solving (17) and (18)

for VI and Vz yields

72=F-L+[zL]~. (:20)

Equation (16) can now be solved for the input voltage and
current vectors subject to (19) and (20). With the input vectors
known, the voltages and currents along the line are simply given
by (2).

The input impedance of the two N-ports of Fig. 3@ can be

computed using the chain matrix parameters. First consider the

section of MTL of length lL terminated in an impedance rlet-

work [2$] as shown in Fig. 5. From (2), the voltages and currents

are related as

The output termination condition is

P,=–[z, ]z. (22)

An expression relating the input voltage ~z to the input current

~ is desired.
Substituting (22) into the second equation of (21) and solving

for 11 gives

Z=([422(L)I -[421 (4,)] [Z, S])-Z (23)

Combining ~22) and (23) with the first equation of (21) and

solving for V2 shows

The desired input impcdancc is thctr seen as

[2/;] = -([4,2 (1,,) ]-[4,,(~,.)l[z\l)

“([422 (lL)I-[W,.)IIZ,, I)-’. (25)

Now consider another scctiotr of MTL of length 1~. Let the

opposite cnd be terminated in the load [21,1. The output termi-
nation condition is

i2=[z,. ]G. (26)
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Fig. 5. Input impedance of an MTL with its input terminated in an impedance matrix [Z,]. (a) Transmission line
representation and (b) chain matrix representation.

entering them is zero, or

N

~z:+zo=o (34)

P.I-z m ~z:-zo=o. (35)
“n=l

The terminal relations for the two N-ports are
+Vm.

Fig. 6. Circuit used to compute the driving point admittance.

@=[z:]~R (36)

p=[qp. (37)

Combining (32), (33), (36), and (37) and solving for ~~ shows

A similar analysis shows that the desired input impedance is
F’=–([zg]+ [z:]) -’Fro. (38)

[z:] = -([011(lR)]-[ZL][+21(1R)])-”
Let ([Z:] + [Z~ ]),; 1 denote the ~th element of the inverse of

the matrix ([ Zi~] + [Z& ]). Then the N equations of (38) may be
rewritten as

“([@A~R)]-[z~l[&(zR)]). (27)

For lossless lines it is easy to show, with the aid of (11)-(14),
that the above equations reduce to z:=- f ([z;] +[z:]);’vm

~=1

[Z:] = ([ Z,]+ jtan(~l~)[ZC])

1$= - : ([z:]+ [z:] );nlvm
~=]“([ Z.]+jtan(BIL)[Z, ])-’[zc] (28)

[Z~]=[ZC]([ZC]+ jtat_s(@~)[Z~])-’

.([Z~]+j’tan(~l~ )[ZC]), (29) 1,$=- ; ([z:] +[z$]);:vm. (39)
~=1

Equations (28) and (29) are the extension of the familiar input
impedance of a two-conductor line.

The admittance Y= is approximated by the driving point

admittance of the l-port formed by the connection of the two
N-ports as shown in Fig. 3. To determine Y“, place a voltage

source V~ across the terminals of the l-port of Fig. 3(c) as
shown in Fig. 6. The driving point admittance of the voltage

source is the ratio of the current 10 to the voltage V~ [4]:

Summing the N equations of (39) and using (34) gives

(40)

Therefore the desired driving point admittance is given by

Y“= : : ([zf]+[z~]),;’. (41)
i-lj=lY“=zo/vm. (30)

Define an N-element voltage vector ~~ as IV, SUMMARY

Fm=vm(l 1...1), (31)

Kirchhoff’s voltage and current laws for the l-port may be
expressed as

–tiR+7~+Pm=6N (32)

In this paper wc presented an approximate calculation for the

admittance seen looking into a slot in the shield of a multicon-
ductor transmission line when a uniform magnetic current is
placed over the slot. The calculation presented is approximate

in that only the transmission Iinc mode was used in the calcula-

tion; all higher order wavcguidc modes were neglected. By
neglecting the higher order waveguide modes the magnetic
current may bc rcplaccd by a point voltage source at the slot
location, The admittance calculation then corresponds to calcu-
lating the driving point admittance of a point voltage source
located in the shield of an MTL.

iR+iL=dN (33)

where ~R and ~R, and ~L and FL are the N-element terminal
voltage and current vectors of the two N-ports. Assuming the
two N-ports to be linear and passive, the sum of the currents
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Full-Wave Analysis of Multilayer Coplanar Lines

Chia-Nan Chang, Wen-Chang Chang, and Chun Hsiung Chen

Abstract —A full-wave analysis of a coplanar wave-guiding structure
with multiple dielectric layers is presented. In this study, the results of

the hybrid approach that combines the finite-element method and the
conformal-mapping technique are compared with those of the spectral-
domain approach. Numerical results for effective dielectric constants,
characteristic impedances, current distributions, and field distributions
for various multilayer coplanar line structures are presented and dis-
cussed. Comparisons are also made of the computed results with the
available quasi-static ones.

I. INTRODUCTION

With the increased use of suspended substrate lines and for
special purposes such as protection from mechanical or chemi-

cal damage and the provision of additional means to adjust the

transmission line characteristics, the study of multilayer planar

wave-guiding structures has received the attention of a number

of investigators [1]-[5]. Instead of analyzing the problem directly

in the space domain, most previous work has been carried out in
the spectral domain. Rapidity in obtaining the dispersion char-
acteristics of the lines is an advantage of this technique. How-

ever, it is not so easy to obtain both the field patterns and the
characteristic impedances of multilayer planar wave-guiding
structures because of the complicated mathematical manipula-
tion of the fields from the spectral domain to the space domain.

In a recent investigation, a rigorous hybrid full-wave analysis

of coplanar waveguide is presented [6]. In that work, the infinite

space in the original domain is first mapped into a finite region

in the image domain by the mapping function originally em-
ployed by Wen [7], The transformed variational equation in the

image domain is then solved efficiently by the conventional

finite-element method. In this way, the difficulties associated
with both the infinite space and the field singularity near the
conductor edges can be removed. In this paper, the same hybrid
approach is utilized to study the full-wave characteristics of a
coplanar line structure with multiple dielectric layers. Espe-
cially, the frequency-dependent effective dielectric constants
and characteristic impedances of the multilayer coplanar line
are calculated and compared with available data [4], [5]. Also

investigated are the field distribution along the center line of
the slot- and the current distributions on both the signal strip
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Fig. 1. Geometry of mulilayer coplanar line and original doma,in

(x’> O) in z’ plane.

and the ground plane. Because of a lack of data for compariscms,

the results of this hybrid approach are validated by a compari-

son with those of the spectral-domain approach [5].

II. FORMULATION

Consider an open uniform coplanar line structure with mull i-
ple layers of isotropic and Iossless dielectrics as shown in Fig. 1.
Here a central metal strip (assuming negligible thickness) of

width 2a and two conducting ground planes (also of negligible
thickness) of separation 2b are placed in the plane (y’= 0)
between dielectric layers. Above and below the conductors are n
upper and m lower homogeneous dielectric layers of permittivi-

ties ~k = eo~,k (k = 1,2,. . .,n) and ~k = ●oerk (k= 1,2,. . .,rn),

respectively, The guided modes of this inhomogeneous structure

are in general hybrid; therefore, both the axial components EZ

and Hz are required in the analysis. As far as the fundamental

(Ez even and HZ odd) mode is concerned, it is sufficient to
consider the right half structure with a magnetic wall at x‘ = O.

A. Hybrid (Finite-Element/ Conformal-Mapping) Approach

Following the idea of [6], Wen’s mapping function [7]

z’=asn(z, k) (1)

is used to map the right half plane x’> O (original domain) in

Fig, 1 into a rectangular region (of width 2K(k) and height
K(k’)) in the image domain (Fig, 2), Here, sn(z, k) k the

complex sine elliptic function, K(k) and K(k’) are the complete
elliptic integrals of the first kind and the second kind [8],

k = a/ b~ a~d k‘ = ~’. By this mapping, the transverse

fields (El, H,) are smooth everyw~er~ in the image domain [6],
alt bough the transverse fields (E;, H;) in the original domain
exhibit edge singularity near the conductor edges. Thus the field
singularity difficulty in the original domain may be removed.

The variational formulation for the multilayer coplanar lines
in the image domain (Fig. 1) is the same as [6, eq. (l)], and the

boundary conditions on the electric and magnetic walls are

shown in Fig, 2, The details of the numerical procedures are
given in [6]. -

B. Spectral-Domain Approach

For purposes of cross checking, the new type of
domain approach [9] is also applied to the multilayer

spectral-
coplanar
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